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Method of measuring the coupled lattice functions at the interaction point ine¿eÀ storage rings

Yunhai Cai
Stanford Linear Accelerator Center, Menlo Park, California 94025, USA

~Received 26 April 2003; published 3 September 2003!

We have investigated a method of measuring the complete lattice functions including the coupling param-
eters at any azimuthal position in a periodic and symplectic system. In particular, the method is applied to
measure the lattice functions at the interaction point where the beams collide. It has been demonstrated that a
complete set of lattice functions can be accurately measured with two adjacent beam position monitors and the
known transformation matrix between them. As a by-product, the method also automatically measures the
complete one-turn matrix.

DOI: 10.1103/PhysRevE.68.036501 PACS number~s!: 41.85.2p, 41.75.2i, 29.27.2a
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I. INTRODUCTION

The lattice functions are the parameters that describe
linear motion of particles in accelerators. These functions
the well-known Courant-Snyder parameters@1# when the
motion is not coupled between the horizontal and verti
planes. However, due to machine imperfections, such as
roll of quadrupole magnets or the vertical misalignment
the sextupoles, the motion is often coupled. Even in an id
accelerator, the solenoid in a particle detector introduces c
pling near the interaction point~IP!. To describe the coupled
particle motion, four additional parameters@2# are introduced
as an extension to the Courant-Snyder parameters. Rece
it was found that another kind of parametrization@3# is nec-
essary to complete the description of the coupled motion
accelerators, especially when the coupling is large.

Since the lattice functions completely determine the lin
motion of the particles, they play an important role in t
design and operation of accelerators. In particular, the ve
cal beta functionby* at the IP is one of the most importan
parameters in colliders because it dictates the dynamic
the beam-beam interaction during the collision process as
beam intensities increase@4#. It is well known that accurate
measurement and control ofby* is vital to improving the
luminosity.

Besidesby* , the tilt angle of the beam, which is strong
related to the coupling parameters, can also have measu
effects on the luminosity@5#. Therefore it is important to
accurately measure the complete lattice functions includ
the coupling ones at the IP.

One of the best methods of measuring the lattice functi
is to excite the beam coherently at the betatron freque
and then measure the phase of the oscillation at the loca
of beam position monitors~BPM!. This technique was firs
introduced at LEP for measuring the phase advances@6# and
was extended for measuring coupling parameters at CE
@7#. Recently, an alternative method@8# based upon the kick
ing elements in the transfer matrix has been applied to
low energy ring~LER! at PEP-II@9#.

All these established methods have been demonstrate
be very fast and accurate for the quantities that can be
rectly measured such as the phase advances betwee
BPMs. However, to attain indirect measurable parame
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such as theb functions, some kinds of approximation a
required. For example, at CESR, the relationship between
total derivative of the phase advance with respect to the
dependent variables coordinate and theb function, namely,
c851/b, is valid only when the coupling is very small an
hence can be neglected. Another alternative is to buil
model for the entire ring. In this approach, the result depe
on the choice of the fitting parameters and the time for a
lyzing the data could take much longer than the time
taking the data. Since the machine changes more in a lo
period of time, it is hard to make a fine adjustment to t
machine if the analysis time takes too long.

In this paper, we continue the investigation of the me
surement technique of using the turn-by-turn BPM readin
taken while the beam is coherently excited. In Secs. II a
III, we start with the theory of linear coupling and a simp
way to propagate the coupled lattice functions. We contin
on with the description of the eigenmotion in Sec. IV a
then introduce the measurement method together wit
simple analytical solution in Sec. V. In Sec. VI, we study t
method using realistic simulations in great detail. Finally, t
estimate of the measurement errors and an actual mea
ment is given in Sec. VII. In Sec. VIII, we discuss th
advantages and disadvantages of the method comp
to others.

II. PARAMETRIZATION

Consider only the transverse motion in a circular acc
erator. It has been shown by Edwards and Teng@2# that
the one-turn transformation matrixT in a periodical
and symplectic system can be decoupled by a simila
transformation

T5Z•M•Z21, ~2.1!

where T, M , and Z are all 434 symplectic matrices. In
particular,M is in a block diagonal form

M5S M1 0

0 M2
D ~2.2!

andZ is in a ‘‘symplectic rotation’’ form
©2003 The American Physical Society01-1
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Z5S cI sW̄

2sW cI
D , ~2.3!

whereM1,2, I, W, andW̄ are all 232 matrices. HereI is the
identity matrix andW̄ is defined as the symplectic conjuga
of matrix W, namely,W̄52J•WT

•J, where J is the unit
symeplectic matrix

J5S 0 1

21 0D . ~2.4!

Moreover, the four-dimensional symplecticity requires th
the submatricesM1,2 andW are also symplectic ands,c are
parametrized in terms of an anglef: s5sinf and
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c5cosf. Since each two-dimensional symplectic matr
consists of three independent parameters, it is clear from
expressions that we need ten independent parameters t
scribe the one-turn matrixT.

Recently, it was shown by Sagan and Rubin@3# that there
exists another solution that has the parametrization os
5sinhf,c5coshf, and det(W)521, instead ofs5sinf,c
5cosf, and det(W)51 in the previous solution. Dependin
upon the specific properties ofZ, one of the two solutions
should be selected. We will return to them in the followin
section. Clearly,Z is related to the coupling and therefore w
call f the coupling angle and the elements ofW as the cou-
pling parameters in this paper. In particular, iff50, the
one-turn matrix is decoupled.

SinceMi is a symplectic matrix, it can be parametrize
with the well-known Courant-Snyder parameters@1#
Mi5S cos~2pn i !1a isin~2pn i ! b isin~2pn i !

2g isin~2pn i ! cos~2pn i !2a isin~2pn i !
D , ~2.5!
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where n i is the frequency of the eigenmode, measured
units of revolution frequency. Unlike the other eight para
eters of the matrixT, one can show thatn1,2 are invariant,
namely, independent of the locations in the ring. In additi
the symplecticity yieldsg i5(11a i

2)/b i .
Moreover, we can make another similarity transformat

to the matrixMi ,

Mi5Ui•Ri•Ui
21 , ~2.6!

whereRi is the rotational matrix

Ri~2pn i !5S cos~2pn i ! sin~2pn i !

2sin~2pn i ! cos~2pn i !
D ~2.7!

and

Ui5Ui
05S Ab i 0

2a i /Ab i 1/Ab i
D . ~2.8!

It is worth noting that the transformation matrixUi is not
unique. Since the rotation matricesRi commute, it is easily
seen thatUi•R(c i), wherec is an arbitrary angle, also sa
isfies Eq.~2.6!. c i can be interpreted as the phase for t
eigenmode since it enters the equations similar to the t
phase advance 2pn i . Here we can setc i to zero because th
phase itself has no physical meaning and only their diff
ences are meaningful.

Substituting Eq.~2.6! in Eq. ~2.1!, we find

T5A•R•A21, ~2.9!

where
n
-

,

n

al

r-

R5S R1 0

0 R2
D ~2.10!

and

A5S cI sW̄

2sW cI
D •S U1 0

0 U2
D . ~2.11!

One can see explicitly that there are eight independent
rameters in the matrixA. If we count two arbitrary phase
c i , A consists of ten independent parameters as well
general, it can be shown that one needs only ten parame
to describe a 434 symplectic matrix. Based on Eq.~2.11!,
we can construct A from the lattice functions:
b i , a i , wa , wb , wc , wd , andf. Here we note that

W5S wa wb

wc wd
D . ~2.12!

SinceA contains exactly the same local information as t
lattice functions, it will be called the lattice matrix in thi
paper. Furthermore, if we have the lattice matrixA together
with the eigentunes, we can reconstruct the one-turn ma
at that location through Eq.~2.9!.

III. PROPAGATION

In principle, one could extract the lattice function direct
from the one-turn matrix at any given azimuthal location
the ring based on the solutions given in Ref.@2,3#. However,
the phase advances between any two positions are not
defined since at each position the analysis is independe
carried out and hence the phases are arbitrary as we
cussed in the preceding section.
1-2
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FIG. 1. Coupling angle in a half of the inter
action region of the LER at PEP-II.
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To resolve the ambiguity of the phase, we need to so
how relate two lattice matrices at different locations. Assu
ing that we haveA(s1) constructed from the lattice function
with zero phases at an azimuthal positions1, we want to find
a lattice matrixA(s2) such that

T~s2!5A~s2!•R•A21~s2!, ~3.1!

whereT(s2) is the one-turn transformation matrix at locatio
s2. Please note that the rotation matrixR does not depend
upon any azimuthal positions because the eigentunes are
bally invariant quantities in this periodic system. We find th
a possible solution of Eq.~3.1! is

A~s2!5T~s2 ,s1!•A~s1!, ~3.2!

whereT(s2 ,s1) is the transformation matrix froms1 to s2.
Here we have used the concatenation property of the tr
formation matrices: T(s2)5T(s2 ,s1)•T(s1)•T(s2 ,s1)21.
Equation ~3.2! provides us an extremely simple way
propagate the lattice matrix around the ring.

Once we haveA(s2), the lattice functions are easily ex
tracted from it. Decomposing it in terms of 232 matrices

A~s2!5S A11 A12

A21 A22
D ~3.3!

and knowingA(s2) is also in the form of Eq.~2.11!, we find
c5AdetA11,

s5A12c2, s5sinf~c<1!,

s5Ac221, s5sinhf~c.1!, ~3.4!

and

U15A11/c, U25A22/c, W52A21•U1
21/s. ~3.5!
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The Courant-Snyder parameters and the phase advance
be calculated using

b i5Ui~1,1!21Ui~1,2!2,

a i52@Ui~1,1!Ui~2,1!1Ui~1,2!Ui~2,2!#,

g i5Ui~2,1!21Ui~2,2!2,

dc i5tan21@Ui~1,2!/Ui~1,1!#. ~3.6!

These formulas are derived from the fact thatUi is equiva-
lent toUi•R(u), whereu is an arbitrary angle. In particular
by choosingu52dc i , we can castUi into the form of Eq.
~2.8!. Heredc i is now well defined as the phase differen
betweens1 ands2 if the phase ats1 is set to zero.

This formulation of calculating lattice functions has be
coded numerically in LEGO@10#. The coupling angle in a
half of the interaction region in the LER is plotted in Fig.
One can see from the figure, the maximumf is as large as
20°. Indeed, for such a large coupling, both solutions
parametrization are required to make a complete calcula
in the region.

Here we plotf to show its important properties: It can b
changed only by coupling elements such as skew quadru
or solenoid. As a result, we can clearly see the steps wh
the skew quadrupoles and solenoid are located in the reg

As a concrete example, let us consider two positions
the ring when the space between them is a drift space
lengthL. The transfer matrix for the drift is written as

Td5S 1 L 0 0

0 1 0 0

0 0 1 L

0 0 0 1

D . ~3.7!
1-3
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It is straightforward to derive the lattice functions at t
end of the drift space explicitly in terms of those at the b
ginning. Denoting all quantities at the end with tilde, t
Courant-Snyder parameters are given by

b̃1,25@L21~b1,22La1,2!
2#/b1,2,

ã1,25a1,22Lg1,2,

g̃1,25g1,2, ~3.8!

the phase advance

dc1,25tan21@L/~b1,22La1,2!#, ~3.9!

the coupling parameters

w̃a5wa1wcL,

w̃b5wb2L~wa2wd1wcL !,

w̃c5wc ,

w̃d5wd2wcL, ~3.10!

and f̃5f. One can see that, in this simple example of
drift space, the Courant-Snyder parameters and the coup
parameters propagate independently. However, it is evid
that it is not true for a more general transformation.

IV. EXCITED EIGENMOTION

An eigenmode can be excited in an electron ring by
continuing driving kick at the frequency of the mode@6#.
Balancing this with the radiation damping, a steady stat
reached after a few damping times. At the saturated state
turn-by-turn readings by a perfect BPM can be derived@11#
directly from the lattice matrixA in Eq. ~2.11!, which trans-
fers the eigencoordinates to physical ones. With only
excited eigenmode 1, we have

xn
(1)5K1cAb1sin~2pnn11c1!,

yn
(1)52K1sAJ1~wa ,wb!sin~2pnn11c11dm1!,

~4.1!

whereJ1(wa ,wb)5b1wa
222a1wawb1g1wb

2 and

sin~dm1!5
wb

Ab1J1~wa ,wb!
,

cos~dm1!5
wab12wba1

Ab1J1~wa ,wb!
. ~4.2!

K1 is the amplitude of the excitation which is a global qua
tity, meaning that it is the same at all BPMs.c1 is the beta-
tron phase of the eigenmode 1. It is well known that t
differencec1 between the BPMs gives us the phase advan
Here the subscriptn is the index of the turns.
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Since mode 1 mostly oscillates in the horizontal pla
when the coupling is weak, we sometime callxn

(1) in Eq.
~4.1! the ‘‘in-plane’’ andyn

(1) the ‘‘out-plane’’ oscillation. No-
tice that there is a phase shiftdm1 between the in-plane an
out-plane oscillation. In addition, one can show th
J1(wa ,wb) is always positive and therefore it is sometim
called the out-planeb function.

Similarly, if only mode 2 is excited, we have

xn
(2)5K2sAJ2~wd ,wb!sin~2pnn21c21dm2!,

yn
(2)5K2cAb2sin~2pnn21c2!, ~4.3!

whereJ2(wd ,wb)5b2wd
212a2wdwb1g2wb

2 and

sin~dm2!52
wb

Ab2J2~wd ,wb!
,

cos~dm2!5
wdb21wba2

Ab2J2~wd ,wb!
. ~4.4!

It is obvious that these two sets of turn-by-turn readings
a single BPM are still not enough to determine the compl
eight parameters of lattice functions at that location beca
the quantities associated with the slope could not be m
sured at a single position.

V. AN ANALYTICAL SOLUTION

Since the slope is the concern, it is natural to add the n
BPM into the measurement system. For simplicity, let
consider a system of two BPMs connected by a drift sp
with length L. As an example shown in Sec. III, the lattic
functions at the second BPM are completely determined
the initial functions at the first BPM and the length of th
drift. The analytical expressions are given in Eqs.~3.8!–
~3.10!.

Suppose we have recorded the two sets of turn-by-t
readings at the two BPMs taken when the eigenmotion
excited separately in modes 1 and 2 as described in the
ceding section; we want to find the complete lattice functio
at the entry in terms of the readings. First, we can ea
obtain the amplitudes of the oscillations and then extract
phases of the oscillations by using a fast Fourier transfor
tion. Taken together, we have eight phases and eight am
tudes. Finally, we would like to solve the lattice functions
terms of these 16 parameters. Of course, not all 16 par
eters are independent because of the symplecticity.

Here we continue to note the quantities at the exit or
second BPM with tilde. When mode 1 is excited, the in-pla
amplitudesxn

(1) and x̃n
(1) are proportional to the excitation

amplitudeK1 as indicated in Eq.~4.1!. Knowing thatf is
not changed by a drift, we can take the ratiok1 of the am-
plitudes and obtain

b1 /b̃15k1
2 , ~5.1!

according to Eq.~4.1!.
1-4
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On the other hand, combining the first equation in E
~3.8! with Eq. ~3.9!, we have

b1b̃15L2~11cot2dc1!, ~5.2!

where dc15c̃12c1. The above two equations are eas
solved. We find

b15Luk1cscdc1u,

b̃15Lucscdc1u/uk1u. ~5.3!

Similarly, for mode 2, we have

b25Luk2cscdc2u,

b̃25Lucscdc2u/uk2u, ~5.4!

wherek2 is ratio of the vertical amplitudes while the seco
mode is excited. Substituting the solution ofb1,2 back into
Eq. ~3.9!, we obtain

a1,25uk1,2cscdc1,2u2cotdc1,2. ~5.5!

Finally ã1,2 is solved by simply using the second equation
Eqs.~3.8!.

Once the Courant-Snyder parameters are known, we
in a position to solve the coupling paramete
wa ,wb ,wc ,wd , by using the measured out-plane phas
dm1 , dm2, anddm̃1. First, we expresswa , wc , andwd in
terms ofwb using Eqs.~4.2! and ~4.4!

wa5wb~a11cotdm1!/b1 ,

wd52wb~a21cotdm2!/b2 , ~5.6!

and wc5(wawd21)/wb for the first kind of solution. Then
we substitute them into Eq.~3.10! to obtain the coupling
parameters,w̃a andw̃b at the exit. Finally we solvewb from
the equation

w̃a5w̃b~ ã11cotdm̃1!/b̃1 . ~5.7!

It is straightforward to find

wb56LAucscdc1cscdc2uF1F2, ~5.8!

where

F15k1csc~dc11dm̃12dm1!sin~dm1!sin~dc11dm̃1!,

F25k2csc~dm22dc2!sin~dm2!sin~dc2!. ~5.9!

In addition, it is easily seen that the coupling anglef is
given by

tanf5~Ab1b2 /~J1J2!/k12k21!
1/2, ~5.10!

wherek12 andk21 are the ratios of the in-plane amplitude
the out-plane one while mode 1 or 2 is excited.
03650
.
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,
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For the second kind of solution, the exact same derivat
goes through except that we havewc5(wawd11)/wb . The
solution becomes

wb56LA2ucscdc1cscdc2uF1F2 ~5.11!

and

tanhf5AAb1b2 /~J1J2!/k12k21. ~5.12!

The choice of what kind of solutions to use in the analy
is determined entirely by the sign ofF1F2. If F1F2.0, we
choose the first solution becausewb should be a real numbe
in the stable system. In the other case, the second solu
should be chosen.

Of course, instead of usingdm̃1, one could also usedm̃2
to solve the coupling parameters. In practice, we find t
they yield the same numerical results.

In addition, we want to apply the results to measure
lattice functions including the coupling parameters at the
For simplicity, let us assume that the IP is halfway betwe
the two BPMs. Since we know the lattice functions at t
beginning, the functions at the middle are easily obtained
propagating a half of the distance in the drift. We have

b1,2* 5L@2uk1,2ucotdc1,21~11k1,2
2 !ucscdc1,2u#/4uk1,2u,

a1,2* 5~k1,2
2 21!ucscdc1,2u/2uk1,2u. ~5.13!

As a reminder, hereL is the length anddc1,2 are the phase
advances between the two BPMs.

To compare this analytical solution with the theoretic
calculation and the direct numerical fitting to the simulat
data ~to be discussed in the following section in detail! we
study a few cases where the solenoid is turned off. The re
of a typical one is tabulated in Table I. In the table, we ha
summarized the lattice functions derived from three differ
approaches: calculation, numerical fitting, and analytical
lution. One can see that the agreements are excellent.

TABLE I. The lattice functions at the IP of the LER using thre
different approaches. The results in the second column are obta
with the procedure outlined in Secs. II and III. The third column
the result of a direct fitting to the turn-by-turn readings of tw
BPMs. In the fourth column, we extract the phases and amplitu
from the data and then use the analytical formulas in this section
computing the lattice functions.

Parameter at the IP Calculation Numerical Analytica

b1* ~m! 0.5332 0.5327 0.5383
a1* 20.0986 20.0943 20.0944

b2* ~m! 0.0172 0.0174 0.0174
a2* 20.0125 20.0158 20.0062

sinhf* 0.0671 0.0667 0.0662
wa* 20.1684 20.1720 20.1743

wb* ~m! 0.0492 0.0510 0.0488
wc* (m21) 6.9911 6.7903 6.8149

wd* 3.8807 3.7986 3.8291
1-5
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Here we have derived the complete set of lattice functi
at a given azimuthal location in the ring in terms of the rat
of amplitudes and phase differences of the coherent osc
tions. As we mentioned at the end of Sec. II, the latt
matrix can be constructed based on Eq.~2.11! with the com-
plete lattice functions. Therefore, together with the measu
eigentunes, we can automatically measure the one-turn
trix using Eq.~2.9!.

For a symmetric final focusing system,uk1,2u51 and thus
a1,2* 50. Theb functions are further simplified to

b1,2* 5L~cotdc1,21ucscdc1,2u!/2. ~5.14!

Often this formula gives an excellent estimate ofb* assum-
ing the beam waist is halfway between the two BPMs ev
when a solenoid is present because the focusing effect
the solenoid are rather weak in high-energy accelerators.
example, if we apply this simple formula to the phase a
vance data taken recently from the rings at PEP-II, we h
bx* 533.8 cm and by* 51.24 cm in the LER andbx*
540.64 cm andby* 51.15 cm in the high-energy ring. Thes
values of theb functions are consistent with the results a
tained by other types of measurement.

VI. SIMULATION

In general, it is hard to solve explicitly the lattice fun
tions if the space between two BPMs is not a drift. Still, w
would like to extend the method at least numerically to m
general situations, more importantly, to a solenoid that u
ally covers the vicinity of the IP.

To make a realistic simulation, we continue to build
the class library LEGO@10# and add a new type of kicke
into the code. The kicker is allowed to periodically excite t
beam either in the horizontal or vertical plane with a sin
soidal wave locked at a certain frequency.

In the simulation, we build a realistic LER model includ
ing a solenoid in a particle detector. Typically, after assign
systematic and random errors into the design lattice, we s
the orbit, make coupling corrections, and adjust the tune
the working point. After the model is ready for taking th
simulated data, we first analyze the lattice functions in
entire ring relative to the closed orbit, using the method
have outlined in Sec. III. In particular, we calculate the l
tice functions at the IP so that they can be compared with
simulated measurements.

To make a simulated measurement, we first switch on
radiation so that the particle will lose energy while it pass
through the magnets according to the standard formula@12#.
In addition, the phases of the cavities are set at the pro
values such that the energy lost per turn is exactly comp
sated. It is well known that the process of a particle los
energy in the magnets and then gaining back the energ
the cavities results in radiation damping.

Moreover, we turn on the kicker that is locked on t
frequency of mode 1 to periodically kick the beam in t
horizontal plane. The particle is tracked up to four damp
times, about 40 000 turns, until it reaches the saturated
plitude at which point the excitation is being balanced by
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radiation damping. We continuously record the transve
beam positions at the IP and its two adjacent BPMs for 10
turns. For the second set of data, we repeat the same pro
while locking on the frequency of mode 2 and excite t
beam in the vertical plane. The two BPMs used here are
cm away from the IP and inside the solenoid.

The two sets of simulated data are plotted in Fig. 2 in b
at three different locations in the sequence defined by
direction of the beam. In the middle row are the readings
the IP. Since there is no real BPM at the IP in the machi
we display them here only for the purpose of illustration. T
left column displays the first set of data taken while mode
is excited and the right column for the second set. It can
seen in the figure that the readings trace out titled ellipse
all cases since the oscillations being driven always have
same frequency as the driving force.

Given the simulated data, we know theoretically that th
can be described byxn

( i ) and yn
( i ) in Eqs. ~4.1! and ~4.3!.

Mathematically, that means that we may define the funct
x2 to be minimized with least-square fitting

x25
1

2 (
n51,1024

i 51,2

@~xn
( i )2Xn

( i )!21~yn
( i )2Yn

( i )!21~ x̃n
( i )2X̃n

( i )!2

1~ ỹn
( i )2Ỹn

( i )!2#, ~6.1!

whereXn
( i ) andYn

( i ) are the actual turn-by-turn readings an
the tilde notes the corresponding quantities at the sec
BPM. Here we required all eight oscillations at both BPM
to be fitted simultaneously.

Since the lattice functions, including the phase advan
at the second BPM, can be derived from the initial latti
functions at the first BPM, if the transformation matrix
known, they are eliminated as independent fitting variab
Only their derived values are used in the fitting.

In the LER, we extract the transformation matrix betwe
two BPMs from the prepared lattice, as if it is known exact
This assumption is partially justified because there are
strong focusing elements in between. In this particular ca
the elements include only the solenoid and bending magn

With the transformation matrix, we finally reduce th
number of independent fitting variables to 22. They inclu
b1,2, a1,2, swa ,swb ,swc ,swd , c1,2, n1,2, K1,2, and eight
parameters that specify the centers of the ellipses. The fi
result is shown in Fig. 2 in green color. One can see from
figure that the fitting is in excellent agreement with the da
The residuals are reduced below 10mm.

Once we have the fitted initial lattice functions at the e
try, we propagate them to the IP. The propagated functi
are tabulated in Table II, in addition to these values from
direct calculation before the data is taken. Based on
propagated lattice functions, we compute the eigen moti
according to Eqs.~4.1! and~4.3! at the IP and show them in
Fig. 2 in red in the middle row. It is clear from the figure th
the direct simulation is consistent with the prediction bas
on the numerical measurement at the IP.

The results in Fig. 2 and Table II are those from a typic
case among many random seeds that we have studied
demonstrate this, we showb2* and f* from all seeds that
1-6
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have been studied in Fig. 3. In all these cases, any infor
tion related to the specific seed is never used in the fittin
For example, the initial lattice functions at the beginning
the fitting are always set at their design values.

FIG. 2. ~Color! Simulated turn-by-turn measurement at tw
BPMs near the IP in the LER:~a! and~b! represent the readings o
the first BPM when the beam is excited in the horizontal and v
tical plane, respectively,~c! and~d! for the IP, and~e! and~f! for the
second BPM.

FIG. 3. ~Color! Measurement of lattice functions at the IP. Th
circles represent the calculated values and the stars represen
numerically measured ones.
03650
a-
s.
f

VII. MEASUREMENT

Up to this point we have assumed that the BPMs
perfect and therefore we have no errors in the measurem
However, it is well known that the actual readings of a BP
can be distorted by the errors in its geometry and electron
Since the errors are largely compensated with good cali
tion, we assume that the errors are small and thus linear.
actual transverse positions of the beam described byxn

( i ) and
yn

( i ) are scaled linearly

Xn
( i )5gxxn

( i )1gyxyn
( i ) ,

Yn
( i )5gxyxn

( i )1gyyn
( i ) , ~7.1!

to generate the real readingsXn
( i ) and Yn

( i ) . gx,y are com-
monly called the gain andgxy,yx the cross coupling for the
BPMs.

r-

the

FIG. 4. ~Color! Turn-by-turn measurement at two BPMs ne
the IP in the LER:~a! and ~b! represent the data of the first BPM
when the beam is excited in the horizontal and vertical plane,
spectively, and~c! and ~d! for the second BPM.

TABLE II. Numerical measurement of the lattice function at th
IP. The results in the second column are obtained with the met
outlined in Secs. II and III. The third column is the result of a dire
fitting to the turn-by-turn readings of two BPMs described in th
section.

Parameter at the IP Calculation Numerical

b1* ~m! 0.5258 0.5253
a1* 0.1459 0.1520

b2* ~m! 0.0110 0.0114
a2* 20.0900 20.0927

sinhf* 0.0728 0.0674
wa* 0.0398 0.0511

wb* ~m! 20.0522 20.0497
wc* (m21) 218.2750 219.7770

wd* 20.9313 20.3235
1-7
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It is obvious that these unknown errors will cause so
systematic errors in the measurement. For simplicity, let
now assume thatgxy5gyx50 and the space between the tw
BPMs is a drift. With this simplification, we can repeat th
similar exercise as we did in Sec. V and find the analyti
solution. It is easily seen that the results are obtained sim
by replacingk1,2 with k1,2g̃x,y /gx,y in all the equations in
Sec. V. In particular, we have

b1,2* 5L@2uk̄1,2ucotdc1,21~11k̄1,2
2 !ucscdc1,2u#/4uk̄1,2u,

a1,2* 5~ k̄1,2
2 21!ucscdc1,2u/2uk̄1,2u, ~7.2!

where k̄1,25k1,2g̃x,y /gx,y . Note that only the ratio of the
gains enters the solution. The reason for that is that the s
metric part of the gains can always be absorbed by the gl
oscillation amplitudesK1,2.

The errors ofb i* anda i* in the measurements can also
estimated directly using Eq.~5.13! and taking their partial
derivatives with respect to the variablesk i anddc i . Forb i* ,
we write

Db i*

b i*
5F ~k i

221!ucscdc i u
2uk i ucotdc i1~11k i

2!ucscdc i u
GDuk i u

uk i u
. ~7.3!

The equation shows thatb i* is most insensitive to the erro
caused by the ratio of the amplitudes sincek i is always near
1 in existing colliders. However, there is one exception, t
is, when cscdc i becomes infinity, which could happen asb i*
approaches zero. Normallyby* !bx* in electron storage
rings; this means thatby* is much more sensitive thanbx*
with respect to the errors in the ratio of the amplitudes.

For a i* , we find

Da i*

a i*
5

k i
211

k i
221

Duk i u
uk i u

. ~7.4!

The pole atuk i u51 in the coefficient implies thata i is ex-
tremely sensitive to the errors ink i .

For symmetric colliders, we use Eq.~5.14! to make an
estimate of measurement errors inb i* . The accuracy re-
quired in the measurement of the phase advancec i is given
by

Db i*

b i*
52ucscdc i uDc i . ~7.5!

Since smallerb i* makesdc i closer top, the equation im-
plies that the measuredb i* grows more uncertain asb i* be-
comes smaller. This phenomenon was seen recently
PEP-II whenby* was lowered. Given the same errors in t
phase advances, the equation also shows that the mea
bx* is more accurate thanby* if bx* .by* .

In the general case, we have simulated extensively
effects of these systematic errors on the accuracy of the m
surement in realistic lattices with the solenoid. In the sim
lation, the BPM errors are assigned to the their readings
cording to Eqs.~7.1!. In the numerical studies, we find tha
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the dependencies of the BPMs gains inb i* anda i* are very
similar to their analytical estimates. That is not surprisi
because the focusing effects from the solenoid are so w
that it can be ignored in high-energy accelerators.

One may consider using the gains as additional fitt
variables. In this approach, we find thatb i* anda i* become
arbitrary, although there is always a good fit to the data.
other words, this simple measurement system cannot s
rate the gains from the lattice functions.

Similar conclusions can be reached when cross coupl
are present in the measurement, except that they mainly
fect the accuracy of the coupling parameters instead of
Courant-Snyder parameters. We find only one exceptio
case in which we can separate the cross couplings from
lattice functions, that is, where there exists cross coupling
only one of the two BPMs and we use them as the fitt
variables. Of course, there is no way to know this inform
tion in an actual measurement and it is therefore not v
useful.

In general, we find that the BPM errors should not be us
as fitting variables and should be limited to less than 0.1%
order to achieve 10% accuracy in the measurement.
course, the random noise could also contribute to the er
in the measurement. We find that it should also be redu
below 0.1%. These requirements are rather stringent c
pared to the BPM system we have at PEP-II. Nevertheles
is still interesting to see how the method can be applied
the actual data from the measurement.

Here we take a look at the data taken recently durin
machine development in the LER. The real data are m
noisier than the one generated from the simulation. A squ
filter near the peak in the frequency domain is used to cl
up the data. After the filtering, the data at the same t
BPMs as in the simulation are shown in Fig. 4 in blue col
It is clearly seen from the data in the right column that t
random noise in the horizontal plane smears the ellipses
cited by mode 2. As a result, the ellipses become parall
grams.

We fit the data exactly the same way as in the simulati
The fitted points are plotted in Fig. 4 in red. One can see
the fit for mode 1 is good but is not so for mode 2, probab
due to the noise.

The result of the measurement at the IP is tabulated
Table III and compared with the design values. It is not cle
how accurate the measured results are in the table, given
unknown gains and cross couplings in the BPMs. We exp
that the lattice functions are much more accurate in the h
zontal plane than the vertical one, based on the previ
error analysis and the residual of the fitting.

It is surprising to see thatb2* is not so far away from its
design value, given the inadequate fit. That is most likely d
to the constraints on the phases. The measurement ofa2*
indicates that the errors of the vertical gain are probably v
large because the derived vertical beam waist,sw'a2* b2*
'8 mm, is more than half of the bunch length, which is ve
unlikely since the degradation of the luminosity from such
large shift of the waist is not seen at PEP-II. Assuming
beam waist is actually in the middle, we estimate that
1-8
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vertical BPM gains have errors of about 2%. Similarly, w
can show that the measured couplings are too large c
pared to the vertical beam size obtained indirectly from
luminosity scan. It implies that the cross coupling from t
BPM is also too large in the measurement. Although o
one set of data is shown here, the results from many o
datasets are very similar.

VIII. DISCUSSION

A new method of measuring the lattice functions at a
azimuthal position in a periodic and symplectic system,
cluding the coupling parameters, is studied in great detai
particular, the method is applied to measure the lattice fu
tions at the IP where the beams collide. We have dem
strated numerically that a complete set of lattice functio
can be accurately measured using two adjacent BPMs
gether with the known transformation matrix between the

With an example of drift space, we analytically solved t
lattice functions in terms of the phase differences and ra
of amplitudes of the excited oscillations. For this examp
the analytical and numerical solutions yield essentially id
tical results. Based on the analytical formula, estimates of

TABLE III. Measurement of a complete set of lattice functio
including the coupling parameters at the IP.

Parameter at the IP Design values Measured value

b1* ~m! 0.5000 0.2415
a1* 0.0000 0.2447

b2* ~m! 0.0125 0.0167
a2* 0.0000 0.4642

sinf* 0.0014 0.6145
wa* 0.1428 20.0189

wb* ~m! 0.1428 20.3358
wc* (m21) 27.0000 2.9913

wd* 0.3571 0.2428
s
n

ic
gs
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measurement errors due the systematic errors are give
well.

This method has been applied to the LER at PEP-II.
one may expect, the measured lattice functions at the IP
not accurate enough partially because of the large gain
cross couplings in the two neighboring BPMs. An order
magnitude improvement in the BPM reading accuracy is
quired to obtain any meaningful measurement of the c
pling and beam waist near the IP. Although the BPMs are
yet accurate enough to measure the complete set of la
functions at the IP in the LER, the estimates ofb i* using
only the phase advances are still quite useful.

The disadvantage of this method is clearly demonstra
when it is applied to the actual measurement because of
tively large uncertainties in the amplitudes compared to
phases. That is the reason why the method of the phase
vance@7# is so widely used in existing accelerators includi
PEP-II. It is not clear yet how to use only the phase to m
sure locally the coupling at the IP.

Although it is very difficult, if not impossible, to improve
by an order of magnitude for the accuracy of BPM readin
in the entire ring, it is not so difficult if one considers on
two special ones near the IP. Should one achieve the requ
accuracy, the measurement and analysis could be carrie
within 1 min. Then one could even use it in an active fee
back system to control the beam distribution at the IP.

In addition, we can apply the method separately to t
given locations in the ring and obtain the lattice matric
A(s1) andA(s2). Then we can derive the complete transfo
mation matrix between the two points using Eq.~3.2!.
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