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Method of measuring the coupled lattice functions at the interaction point ine*e™ storage rings
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We have investigated a method of measuring the complete lattice functions including the coupling param-
eters at any azimuthal position in a periodic and symplectic system. In particular, the method is applied to
measure the lattice functions at the interaction point where the beams collide. It has been demonstrated that a
complete set of lattice functions can be accurately measured with two adjacent beam position monitors and the
known transformation matrix between them. As a by-product, the method also automatically measures the
complete one-turn matrix.
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[. INTRODUCTION such as the3 functions, some kinds of approximation are
required. For example, at CESR, the relationship between the

The lattice functions are the parameters that describe thi@tal derivative of the phase advance with respect to the in-
linear motion of particles in accelerators. These functions aréependent variable coordinate and th@ function, namely,
the well-known Courant-Snyder parametdfy when the ¢'=1/B, is valid only when the coupling is very small and
motion is not coupled between the horizontal and verticahence can be neglected. Another alternative is to build a
planes. However, due to machine imperfections, such as tH&odel for the entire ring. In this approach, the result depends
roll of quadrupole magnets or the vertical misalignment ofon the choice of the fitting parameters and the time for ana-
the sextupoles, the motion is often coupled. Even in an idedyZing the data could take much longer than the time for
accelerator, the solenoid in a particle detector introduces co@King the data. Since the machine changes more in a longer
pling near the interaction poiritP). To describe the coupled penoq of_t|me, Itis hard_ to make a fine adjustment to the
particle motion, four additional parametég are introduced machmg if the analysis time tal:‘es.too Io_ng._ f th
as an extension to the Courant-Snyder parameters. Recentlsyﬁm this paper, we continue the investigation of the mea-

. : : . rement technique of using the turn-by-turn BPM readings
it was found that another kind of parametrizati@) is nec- .taken while the beam is coherently excited. In Secs. Il and

essary to complete the description of the coupled motion II'I‘II, we start with the theory of linear coupling and a simple

accelerators, especially when the coupling is large. 4y 45 propagate the coupled lattice functions. We continue

Since the lattice functions completely determine the lineag,, \vith the description of the eigenmotion in Sec. IV and
motion of the particles, they play an important role in théhen introduce the measurement method together with a
design and operation of accelerators. In particular, the vertisimp|e analytical solution in Sec. V. In Sec. VI, we study the
cal beta fUﬂ(_:tiOHB; at the IP is one of the most important method using realistic simulations in great detail. Finally, the
parameters in colliders because it dictates the dynamics @fstimate of the measurement errors and an actual measure-
the beam-beam interaction during the collision process as th@ent is given in Sec. VII. In Sec. VIII, we discuss the
beam intensities increa$d]. It is well known that accurate advantages and disadvantages of the method compared
measurement and control qﬂ‘; is vital to improving the to others.

luminosity.

Besidesgy , the 'FI|'[ angle of the beam, which is strongly II. PARAMETRIZATION
related to the coupling parameters, can also have measurable
effects on the luminosity5]. Therefore it is important to Consider only the transverse motion in a circular accel-
accurately measure the complete lattice functions includingrator. It has been shown by Edwards and Téap that
the coupling ones at the IP. the one-turn transformation matriX in a periodical

One of the best methods of measuring the lattice functionand symplectic system can be decoupled by a similarity
is to excite the beam coherently at the betatron frequenciransformation
and then measure the phase of the oscillation at the locations
of beam position monitoréBPM). This technique was first T=2-M-Z71, (2.1
introduced at LEP for measuring the phase advapg&kand
was extended for measuring coupling parameters at CESRhere T, M, and Z are all 4<4 symplectic matrices. In

[7]. Recently, an alternative meth8] based upon the kick- particular,M is in a block diagonal form
ing elements in the transfer matrix has been applied to the

low energy ring(LER) at PEP-II[9]. M 0
All these established methods have been demonstrated to M :( ! ) (2.2)
be very fast and accurate for the quantities that can be di- 0 M;

rectly measured such as the phase advances between the
BPMs. However, to attain indirect measurable parameterandZ is in a “symplectic rotation” form
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cl  sW c=cos¢. Since each two-dimensional symplectic matrix
= (2.3)  consists of three independent parameters, it is clear from the
—sW cl expressions that we need ten independent parameters to de-

. scribe the one-turn matriX.
whereM ,, I, W, andW are all 2<2 matrices. Her¢ is the Recently, it was shown by Sagan and Rul8hthat there

identity matrix andW is defined as the symplectic conjugate eXiSti ;”Otherhz‘)'mig”d t?gg haslth_e ?argm(fastriza_\ti?ﬁrs of
. e 1T . .~ =sinh¢,c=coshg, and det{\) = — 1, instead ofs=sin¢,c

gfr;neat{éxct\-/g' rTr:;itr:jely,W— J-W'-J, whereJ is the unit =cos¢, and det(V) =1 in the previous solution. Depending

ymeplect X upon the specific properties @, one of the two solutions

0o 1 should be selected. We will return to them in the following
J= (2.4 section. ClearlyZ is related to the coupling and therefore we
-1 0/ ' call ¢ the coupling angle and the elements\Wiéfas the cou-

pling parameters in this paper. In particular, #=0, the
Moreover, the four-dimensional symplecticity requires thatone-turn matrix is decoupled.
the submatrice$!, , andW are also symplectic ansic are Since M; is a symplectic matrix, it can be parametrized
parametrized in terms of an anglé: s=sin¢g and with the well-known Courant-Snyder parametgt$

COQZ?TVi)‘f'a/iSin(Z’]TVi) ﬁiSirKZWVi) ) 2
o = yisin2ayy) cog27v;) — a;sin(2m;) )’ @9
|
where v; is the frequency of the eigenmode, measured in R, O
units of revolution frequency. Unlike the other eight param- R= 0 R (2.10
eters of the matrixT, one can show that, , are invariant, 2
namely, independent of the locations in the ring. In addition,and
the symplecticity yieldsy,=(1+ a?)/8; .
Moreovgr, we can make another similarity transformation cl sW| [U; O
to the matrixM; , A= . . (2.11)
-swW cl/ 10 U,
M;=U;-R-U !, (2.6

One can see explicitly that there are eight independent pa-
rameters in the matriA. If we count two arbitrary phases
i, A consists of ten independent parameters as well. In
general, it can be shown that one needs only ten parameters

whereR; is the rotational matrix

_ | _[cod2my)  sin2mv) to describe a &4 symplectic matrix. Based on E(@.11),
Ri(27v;) , (2.7) . :
—sin(2mv;) cog2mvy;) we can construct A from the lattice functions:
Bi, @i, Wa, Wy, W, Wy, and¢. Here we note that
and
e e
W= . 2.1
U_UO_(JE 0 ) o8 W, W, (2.12
U\ —a B NG .

Since A contains exactly the same local information as the
It th notina that the t ¢ i T ; lattice functions, it will be called the lattice matrix in this
IS worth noting that the transiormation matr%; 1S no paper. Furthermore, if we have the lattice matkixogether

unique. Since the rotation ”_‘a”'c‘és C_Ommute, itis easily with the eigentunes, we can reconstruct the one-turn matrix
seen that);- R(¢;), wherey is an arbitrary angle, also sat- at that location through Ed2.9)

isfies Eq.(2.6). ¢; can be interpreted as the phase for the
eigenmode since it enters the equations similar to the total
phase advancey; . Here we can saf; to zero because the

phase itself has no physical meaning and only their differ- |n principle, one could extract the lattice function directly

IIl. PROPAGATION

ences are meaningful. - _ from the one-turn matrix at any given azimuthal location in
Substituting Eq(2.6) in Eq. (2.1), we find the ring based on the solutions given in Ré%3]. However,
the phase advances between any two positions are not well
T=A-R-A7Y, (2.9  defined since at each position the analysis is independently
carried out and hence the phases are arbitrary as we dis-
where cussed in the preceding section.
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To resolve the ambiguity of the phase, we need to somefhe Courant-Snyder parameters and the phase advances can
how relate two lattice matrices at different locations. Assum-be calculated using
ing that we havé\(s;) constructed from the lattice functions
with zero phases at an azimuthal posit&gnwe want to find Bi=U;(1,1)%2+U;(1,2?,
a lattice matrixA(s,) such that

a;=—[Ui(1,DU;(2,1)+ U;i(1,2Ui(2,2],

T(s2)=A(s)-R-A7Y(sy), (3.9
whereT (s,) is the one-turn transformation matrix at location 7i=Ui(2,)%+U;(2,2%,
s,. Please note that the rotation matfRxdoes not depend
upon any azimuthal positions because the eigentunes are glo- Sy =tan [U;(1,2)/U;(1,1)]. (3.6
bally invariant quantities in this periodic system. We find that
a possible solution of E(3.1) is These formulas are derived from the fact thhtis equiva-
lent toU;-R(6), whered is an arbitrary angle. In particular,
A(S2)=T(sz,81)-A(s1), (32 by choosingd= — 8y;, we can cast; into the form of Eq.

here T i< th ¢ . ot (2.8). Here 5¢; is now well defined as the phase difference
whereT(s,,s;) is the transformation matrix froms; to s,. betweens, ands, if the phase a, is set to zero.

Here we have used the concatenation property of the trans- g tormulation of calculating lattice functions has been

. - . o 71
formation matrices: T(s;) =T(Sz,51) T(S1) T(S2,51) ™ coded numerically in LEGQ10]. The coupling angle in a
Equation (3.2) provides us an extremely simple way 10 it of the interaction region in the LER is plotted in Fig. 1.

propagate the lattice matrix arc_;und the_ring. . One can see from the figure, the maximuhis as large as
Once we haveA(s,), the lattice functions are easily x- >po |ndeed, for such a large coupling, both solutions of

tracted from it. Decomposing it in terms 0b<2 matrices parametrization are required to make a complete calculation

A A in the region.
A(Sz)Z( 1 12) 3.3 Here we plot¢ to show its important properties: It can be
Arr Ay changed only by coupling elements such as skew quadrupole

_ _ _ _ or solenoid. As a result, we can clearly see the steps where
and knowingA(s;) is also in the form of Eq(2.11), we find  the skew quadrupoles and solenoid are located in the region.

c=detA;, As a concrete example, let us consider two positions in
the ring when the space between them is a drift space of
s=+y1-c2, s=sin ¢(c<1), lengthL. The transfer matrix for the drift is written as
s=yc?—1, s=sinh¢(c>1), (3.4 1L 0O
and T 0 1 00O 3
1o 0o 1L @7
Ui=Aplc, Uy=Azlc, W=—-Ay-Ui'/s. (3.5 0 00 1
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It is straightforward to derive the lattice functions at the  Since mode 1 mostly oscillates in the horizontal plane
end of the drift space explicitly in terms of those at the be-when the coupling is weak, we sometime cref{i‘) in Eq.
ginning. Denoting all quantities at the end with tilde, the (4.1) the “in-plane” andy" the “out-plane” oscillation. No-

Courant-Snyder parameters are given by tice that there is a phase shifit; between the in-plane and
~ 5 5 out-plane oscillation. In addition, one can show that
B12=[Lo+ (Bro—Lai)®)/B1o, Ji(w,,Wp) is always positive and therefore it is sometime
- called the out-plangs function.
a1 = ag— Ly, Similarly, if only mode 2 is excited, we have
V1= Y12, (3.9 XD =K 8 Jo(Wy W) SIN( 27N 15+ hy + Spt),
the phase advance 512): ch\/Esin(Zq-rn Vot i), 4.3
= 71 -
St o=tan " {LI(B1omLar)], 3.9 whereJ,(Wg,Wp) = BW3+ 2a,W Wy + y,WE and
the coupling parameters
. Wy
Wa=WatWel., = VB232(Wg ,Wp)
Wp=Wp— L(Wa—Wg+Wcl), Wy B+ Wy aty
- COY Stp) = . (4.4
We=We, VB2d2(Wy ,Wp)

It is obvious that these two sets of turn-by-turn readings at
a single BPM are still not enough to determine the complete
eight parameters of lattice functions at that location because

an_d¢>=¢>. One can see that, in this simple example of th.ethe guantities associated with the slope could not be mea-
drift space, the Courant-Snyder parameters and the COUp“rQJred at a single position

parameters propagate independently. However, it is evident
that it is not true for a more general transformation.

Wd:Wd_WCLv (31@

V. AN ANALYTICAL SOLUTION

IV. EXCITED EIGENMOTION Since the slope is the concern, it is natural to add the next

. . . . BPM into the measurement system. For simplicity, let us
An eigenmode can be excited in an electron ring by a . ;

.o L X consider a system of two BPMs connected by a drift space
continuing driving kick at the frequency of the mo{@].

Balancing this with the radiation damping, a steady state i%’v'th lengthL. As an example shown in Sec. Ill, the lattice

— nctions at the second BPM are completely determined by
[ﬁaﬁgi?tl?:rzeﬁezgﬁr%ga@ p;ngetr'fmegfB’?,tl\;hgasnagjeraéi?i[iate’ tqﬁe initial functions at the first BPM and the length of the
directly from the lattice matripA in Eq. (2.11), which trans- drift. The analytical expressions are given in E¢8.8-

. : . . 3.10.
fers the eigencoordinates to physical ones. With only thé
excited eigenmode 1, we have Suppose we have recorded the two sets of turn-by-turn

readings at the two BPMs taken when the eigenmotion is
(1)_ ; excited separately in modes 1 and 2 as described in the pre-
Xy /=K;cC sin(2mnv,+ , . . - . .
. ! JE n2mnv,+y) ceding section; we want to find the complete lattice functions
L _ M o v e et at the entry in terms of the readings. First, we can easily
n K1S\I1(Wa, Wp)SIN2mN v + by + Spes ), @.1) obtain the amplitudes of the oscillations and then extract the
' phases of the oscillations by using a fast Fourier transforma-
whereJ; (W, ,Wp) = B1W2— 2a;W,Wy+ y,W2 and tion. Taken together, we have eight phases and eight ampli-
tudes. Finally, we would like to solve the lattice functions in

W terms of these 16 parameters. Of course, not all 16 param-

Sin(du) = ———————, eters are independent because of the symplecticity.
VB1d1(Wa ,Wp) Here we continue to note the quantities at the exit or the
second BPM with tilde. When mode 1 is excited, the in-plane
Cog Syuy) = WafB1~ Whay _ 4.2 ampl?tudesxﬁl) and?ﬁl) are proportional to the excitation
VB1I1 (W, , W) amplitudeK; as indicated in Eq(4.1). Knowing that¢ is

not changed by a drift, we can take the ratip of the am-
K, is the amplitude of the excitation which is a global quan-plitudes and obtain
tity, meaning that it is the same at all BPM#, is the beta-
tron phase of the eigenmode 1. It is well known that the B1/B1=x32, (5.2
differenceys; between the BPMs gives us the phase advance.
Here the subscript is the index of the turns. according to Eq(4.1).
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On the other hand, combining the first equation in Egs.

(3.8 with Eq. (3.9), we have
B1B1=L2%(1+cofsy,), (5.2

where 8y, =1, — ;. The above two equations are easily
solved. We find

B1=L|k1CSY],

El: L|CSC5!//1|/|K1|. (53)
Similarly, for mode 2, we have
BZI L| K20$C51//2| y
Bo=L|cscop|l| k|, (5.9

wherex, is ratio of the vertical amplitudes while the second
mode is excited. Substituting the solution gf , back into
Eg. (3.9), we obtain

(5.9

@1 =K1, £SCYy o —COtSY 5.

Finally Zzl,z is solved by simply using the second equation in

Egs.(3.8).
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TABLE I. The lattice functions at the IP of the LER using three
different approaches. The results in the second column are obtained

with the procedure outlined in Secs. Il and Ill. The third column is
the result of a direct fitting to the turn-by-turn readings of two

BPMs. In the fourth column, we extract the phases and amplitudes

from the data and then use the analytical formulas in this section for

computing the lattice functions.

Parameter at the IP  Calculation Numerical  Analytical
By (m) 0.5332 0.5327 0.5383
ay —0.0986 —0.0943 —0.0944
B3 (m) 0.0172 0.0174 0.0174
al —0.0125 —0.0158 —0.0062
sinh¢* 0.0671 0.0667 0.0662
w} —0.1684 -0.1720 -0.1743
wp (m) 0.0492 0.0510 0.0488
wr (m™h 6.9911 6.7903 6.8149
w} 3.8807 3.7986 3.8291

For the second kind of solution, the exact same derivation
goes through except that we hawe= (w,wy+1)/w,. The
solution becomes

Once the Courant-Snyder parameters are known, we arg g

in a position to solve the
Suy, Suy, and Suy. First, we expressv,, we, andwy in

terms ofwy, using Eqs.(4.2) and (4.4)
Wa=Wy(ay+cotdus)! By,

Wy= —Wb(a2+C0t5/.L2)/ﬁ2, (56)

andw.= (wawy—1)/w,, for the first kind of solution. Then
we substitute them into Eq3.10 to obtain the coupling
parametersw, andw, at the exit. Finally we solvev,, from
the equation

It is straightforward to find
Wp=* L/|cscdy,cscoy,|F1Fs, (5.9

where
F 1= k1CSA 84y + Spug— Spuq)SIN(Spe1)SIN( Sy + Spey),

Fo= koCSE S — Oyfr2) SIN(Spe2) SIN( Sr2).

In addition, it is easily seen that the coupling angles
given by

(5.9

tang=(VB182/(3132)/ k1o 2, (5.10

wherek, and k,; are the ratios of the in-plane amplitude to
the out-plane one while mode 1 or 2 is excited.

coupling parameters,
W, , Wy W, ,Wgy, by using the measured out-plane phases,

W=+ L+ —|cscéy,cscdi,|FF, (5.11)
tanh¢= \/V,B1,82/(J1‘]2)/K12K21- (5.12

The choice of what kind of solutions to use in the analysis
is determined entirely by the sign &f;F,. If F{F,>0, we
choose the first solution becausg should be a real number
in the stable system. In the other case, the second solution
should be chosen.

Of course, instead of usingu;, one could also uséu.,
to solve the coupling parameters. In practice, we find that
they yield the same numerical results.

In addition, we want to apply the results to measure the
lattice functions including the coupling parameters at the IP.
For simplicity, let us assume that the IP is halfway between
the two BPMs. Since we know the lattice functions at the
beginning, the functions at the middle are easily obtained by
propagating a half of the distance in the drift. We have

BT = L[2| kg cotSyy o+ (1+ K%,z) |cscoy A 1/4] k1 4,

of 7= (K5 5= 1)|cscoyn A12| k1 Jl. (5.13
As a reminder, heré is the length andSy, , are the phase
advances between the two BPMs.

To compare this analytical solution with the theoretical
calculation and the direct numerical fitting to the simulated
data(to be discussed in the following section in detaile
study a few cases where the solenoid is turned off. The result
of a typical one is tabulated in Table I. In the table, we have
summarized the lattice functions derived from three different
approaches: calculation, numerical fitting, and analytical so-
lution. One can see that the agreements are excellent.
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Here we have derived the complete set of lattice functionsadiation damping. We continuously record the transverse
at a given azimuthal location in the ring in terms of the ratiosbeam positions at the IP and its two adjacent BPMs for 1024
of amplitudes and phase differences of the coherent oscillaurns. For the second set of data, we repeat the same process
tions. As we mentioned at the end of Sec. Il, the latticewhile locking on the frequency of mode 2 and excite the
matrix can be constructed based on Efj11) with the com-  beam in the vertical plane. The two BPMs used here are 72
plete lattice functions. Therefore, together with the measuredm away from the IP and inside the solenoid.
eigentunes, we can automatically measure the one-turn ma- The two sets of simulated data are plotted in Fig. 2 in blue

trix using Eq.(2.9). at three different locations in the sequence defined by the
For a symmetric final focusing systeix,; ;=1 and thus  direction of the beam. In the middle row are the readings at
a3 ,=0. The B functions are further simplified to the IP. Since there is no real BPM at the IP in the machine,
we display them here only for the purpose of illustration. The

B =L(cotdiy o+ |cscdy o) /2. (5.14 left column displays the first set of data taken while mode 1

is excited and the right column for the second set. It can be

Often this formula gives an excellent estimate@f assum-  Seen in the figure that the readings trace out titled ellipses in
ing the beam waist is halfway between the two BPMs everfll cases since the oscillations being driven always have the
when a solenoid is present because the focusing effects Bame frequency as the driving force. _

the solenoid are rather weak in high-energy accelerators. For Given the §|mulate<ji data, we know theoretically that they
example, if we apply this simple formula to the phase ad-can be described by’ andy( in Egs. (4.1 and (4.3.
vance data taken recently from the rings at PEP-II, we hav®athematically, that means that we may define the function
BX=33.8cm and lg; =1.24cm in the LER andg} X2 to be minimized with least-square fitting

=40.64 cm ang8y =1.15 cm in the high-energy ring. These =12

values of theg functions are consistent with the results at- _2_

(1) _ yw(i))2 () _vy()y2 4 (S() _%(i))2
X X + Y +(X X
tained by other types of measurement. X L n )"+ O n ) (X n)

1
2 n=T1024
(i (i
VI. SIMULATION R =Y, 6.1
In general, it is hard to solve explicitly the lattice func- whereX’ andY{ are the actual turn-by-turn readings and
tions if the space between two BPMs is not a drift. Still, wethe tilde notes the corresponding quantities at the second
would like to extend the method at least numerically to moreBPM. Here we required all eight oscillations at both BPMs
general situations, more importantly, to a solenoid that usuto be fitted simultaneously.
ally covers the vicinity of the IP. Since the lattice functions, including the phase advances
To make a realistic simulation, we continue to build upat the second BPM, can be derived from the initial lattice
the class library LEGQ10] and add a new type of kicker functions at the first BPM, if the transformation matrix is
into the code. The kicker is allowed to periodically excite theknown, they are eliminated as independent fitting variables.
beam either in the horizontal or vertical plane with a sinu-Only their derived values are used in the fitting.
soidal wave locked at a certain frequency. In the LER, we extract the transformation matrix between
In the simulation, we build a realistic LER model includ- two BPMs from the prepared lattice, as if it is known exactly.
ing a solenoid in a particle detector. Typically, after assigningThis assumption is partially justified because there are no
systematic and random errors into the design lattice, we ste&trong focusing elements in between. In this particular case,
the orbit, make coupling corrections, and adjust the tunes téhe elements include only the solenoid and bending magnets.
the working point. After the model is ready for taking the ~ With the transformation matrix, we finally reduce the
simulated data, we first analyze the lattice functions in thenumber of independent fitting variables to 22. They include
entire ring relative to the closed orbit, using the method weB12, @12, SW,,SW,,SW,,SWy, 12, V12, K1, and eight
have outlined in Sec. lll. In particular, we calculate the lat-parameters that specify the centers of the ellipses. The fitted
tice functions at the IP so that they can be compared with théesult is shown in Fig. 2 in green color. One can see from the
simulated measurements. figure that the fitting is in excellent agreement with the data.
To make a simulated measurement, we first switch on thdhe residuals are reduced below Lén.
radiation so that the particle will lose energy while it passes Once we have the fitted initial lattice functions at the en-
through the magnets according to the standard forrfii®a  try, we propagate them to the IP. The propagated functions
In addition, the phases of the cavities are set at the propere tabulated in Table II, in addition to these values from the
values such that the energy lost per turn is exactly comperdirect calculation before the data is taken. Based on the
sated. It is well known that the process of a particle losingoropagated lattice functions, we compute the eigen motions
energy in the magnets and then gaining back the energy iaccording to Eqs(4.1) and(4.3) at the IP and show them in
the cavities results in radiation damping. Fig. 2 in red in the middle row. It is clear from the figure that
Moreover, we turn on the kicker that is locked on thethe direct simulation is consistent with the prediction based
frequency of mode 1 to periodically kick the beam in theon the numerical measurement at the IP.
horizontal plane. The particle is tracked up to four damping The results in Fig. 2 and Table Il are those from a typical
times, about 40 000 turns, until it reaches the saturated angase among many random seeds that we have studied. To
plitude at which point the excitation is being balanced by thedemonstrate this, we sho@; and ¢* from all seeds that
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FIG. 2. (Colon Simulated turn-by-turn measurement at two Since the errors are largely compensated with good calibra-
BPMs near the IP in the LER@a) and (b) represent the readings of tjon, we assume that the errors are small and thus linear. The

the first BPM When the beam is excited in the horizontal and Ver'aqtual transverse positions of the beam describexﬂb)and
tical plane, respectivelye) and(d) for the IP, ande) and(f) for the yﬂ) are scaled linearly

second BPM.
X0 = gx+ goy@ |
have been studied in Fig. 3. In all these cases, any informa- n = G T Oy
tion related to the specific seed is never used in the fittings. 0 0 0
For example, the initial lattice functions at the beginning of Yo' =0xXn T0yYn's
the fitting are always set at their design values.

(7.1

to generate the real readingg’ and Y{’. g,, are com-
monly called the gain and,, ,x the cross coupling for the

2 ; ; ‘ ‘ ; BPMs.
5
£ 1By il TABLE II. Numerical measurement of the lattice function at the
13 & . b L2 IP. The results in the second column are obtained with the method
T ] outlined in Secs. Il and IlI. The third column is the result of a direct
o fitting to the turn-by-turn readings of two BPMs described in this
% 1 2 s . 5 6 7 section.
10 : ‘ : : : Parameter at the IP Calculation Numerical
B ® B (m) 0.5258 0.5253
5 T ® ? 1 at 0.1459 0.1520
S 4 9 | 8% (m) 0.0110 0.0114
> 0 ° ] al —0.0900 ~0.0927
0 l s s s ‘ sinh¢* 0.0728 0.0674
0 1 2 3 4 5 6 7
Seed w3 0.0398 0.0511
wy (m) —0.0522 —0.0497
FIG. 3. (Color Measurement of lattice functions at the IP. The wr (m™1) —18.2750 —19.7770
circles represent the calculated values and the stars represent the w} —0.9313 —0.3235

numerically measured ones.
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It is obvious that these unknown errors will cause somehe dependencies of the BPMs gainsgh and o are very
systematic errors in the measurement. For simplicity, let ugimilar to their analytical estimates. That is not surprising
now assume tha,, = g,,=0 and the space between the two hecause the focusing effects from the solenoid are so weak
BPMs is a drift. With this simplification, we can repeat the that it can be ignored in high-energy accelerators.

similar exercise as we did in Sec. V and find the analytical

One may consider using the gains as additional fitting

solution. It is easily seen that the results are obtained simply,., i ; :
y PlYariables. In this approach, we find that and«* become

by replacingx; , with Klyzéxyy/gxyy in all the equations in
Sec. V. In particular, we have

Bi= L[2|;1,ﬂ cotdy o+ (1 +;§,2> |cscéyy 4 ]/4|;1,2| ,
aj = (;iz_ 1)|CSC5¢1,2|/2|;1,2| , (7.2

where?lvzz Klyzﬁxly/gx,y. Note that only the ratio of the
gains enters the solution. The reason for that is that the sy

metric part of the gains can always be absorbed by the glob

oscillation amplitudes<; ,.

The errors of3f and«]" in the measurements can also be

estimated directly using Eq5.13 and taking their partial
derivatives with respect to the variablesand ;. For 87 ,
we write
ABY (xf—1)[cscoy]
Br | 2|xilcotsys+(1+«f)|cscoy]

|Ki

The equation shows th#* is most insensitive to the error
caused by the ratio of the amplitudes singas always near

1 in existing colliders. However, there is one exception, thaﬁ

is, when cs®y; becomes infinity, which could happen &%

approaches zero. Normallgy <pg5 in electron storage

rings; this means tha8y is much more sensitive thaf

with respect to the errors in the ratio of the amplitudes.
For o , we find

Aaf B Ki2+1 Al i

al _Kiz—l ||

(7.9

The pole atjx;|=1 in the coefficient implies that; is ex-
tremely sensitive to the errors i .

For symmetric colliders, we use E¢5.14) to make an
estimate of measurement errors @if . The accuracy re-
quired in the measurement of the phase advafds given
by

*
i

BY
Since smallerB makesésy; closer tomr, the equation im-

plies that the measuregf* grows more uncertain g8 be-
comes smaller. This phenomenon was seen recently

= —|cscoyn| Ay . (7.5

arbitrary, although there is always a good fit to the data. In
other words, this simple measurement system cannot sepa-
rate the gains from the lattice functions.

Similar conclusions can be reached when cross couplings
are present in the measurement, except that they mainly af-
fect the accuracy of the coupling parameters instead of the
Courant-Snyder parameters. We find only one exceptional
case in which we can separate the cross couplings from the

n;?ttice functions, that is, where there exists cross couplings in

only one of the two BPMs and we use them as the fitting
variables. Of course, there is no way to know this informa-
tion in an actual measurement and it is therefore not very
useful.

In general, we find that the BPM errors should not be used
as fitting variables and should be limited to less than 0.1% in
order to achieve 10% accuracy in the measurement. Of
course, the random noise could also contribute to the errors
in the measurement. We find that it should also be reduced
below 0.1%. These requirements are rather stringent com-
pared to the BPM system we have at PEP-Il. Nevertheless, it
s still interesting to see how the method can be applied to
he actual data from the measurement.

Here we take a look at the data taken recently during a
machine development in the LER. The real data are much
noisier than the one generated from the simulation. A square
filter near the peak in the frequency domain is used to clean
up the data. After the filtering, the data at the same two
BPMs as in the simulation are shown in Fig. 4 in blue color.
It is clearly seen from the data in the right column that the
random noise in the horizontal plane smears the ellipses ex-
cited by mode 2. As a result, the ellipses become parallelo-
grams.

We fit the data exactly the same way as in the simulation.
The fitted points are plotted in Fig. 4 in red. One can see that
the fit for mode 1 is good but is not so for mode 2, probably
due to the noise.

The result of the measurement at the IP is tabulated in
Table Il and compared with the design values. It is not clear
how accurate the measured results are in the table, given the
unknown gains and cross couplings in the BPMs. We expect
that the lattice functions are much more accurate in the hori-
zontal plane than the vertical one, based on the previous
error analysis and the residual of the fitting.

at It is surprising to see thas3 is not so far away from its

PEP-II when,B;,‘ was lowered. Given the same errors in thedesign value, given the inadequate fit. That is most likely due
phase advances, the equation also shows that the measutedthe constraints on the phases. The measurement; of

Bx is more accurate thagy if g5 > By .

indicates that the errors of the vertical gain are probably very

In the general case, we have simulated extensively thirge because the derived vertical beam wasgt: o3 85
effects of these systematic errors on the accuracy of the mea=8 mm, is more than half of the bunch length, which is very
surement in realistic lattices with the solenoid. In the simu-unlikely since the degradation of the luminosity from such a
lation, the BPM errors are assigned to the their readings adarge shift of the waist is not seen at PEP-Il. Assuming the

cording to Egs(7.1). In the numerical studies, we find that

beam waist is actually in the middle, we estimate that the
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TABLE Ill. Measurement of a complete set of lattice functions measurement errors due the systematic errors are given as

including the coupling parameters at the IP. well.
This method has been applied to the LER at PEP-II. As
Parameter at the IP Design values Measured values one may expect, the measured lattice functions at the IP are
BT (M) 0.5000 0.2415 not accurate eno_ugh partially _becau_se of the large gain and
o 0.0000 02447 cross_coupl_lngs in the two neighboring B_PMs. An orde_r of
L 0.0125 0.0167 magnitude improvement in the BPM reading accuracy is re-
P2 £m) ' ' quired to obtain any meaningful measurement of the cou-
_6“2* 0.0000 0.4642 pling and beam waist near the IP. Although the BPMs are not
S'”‘f 0.0014 0.6145 yet accurate enough to measure the complete set of lattice
l"’a 0.1428 —0.0189 functions at the IP in the LER, the estimates &jf using
wp (m) 0.1428 —0.3358 only the phase advances are still quite useful.
* -1 _ . . .
we (m™7) 7.0000 2.9913 The disadvantage of this method is clearly demonstrated
wg 0.3571 0.2428 when it is applied to the actual measurement because of rela-

tively large uncertainties in the amplitudes compared to the
. . o L phases. That is the reason why the method of the phase ad-
vertical BPM gains have errors of about 2%. Similarly, weance[7] is so widely used in existing accelerators including

can show that the measured couplings are too large COMpep._|| |t is not clear yet how to use only the phase to mea-
pared to the vertical beam size obtained indirectly from theg, ¢ locally the coupling at the IP.

luminosity scan. It implies that the cross coupling from the Although it is very difficult, if not impossible, to improve

BPM is also too large in the measurement. Although onlyy,y an order of magnitude for the accuracy of BPM readings
one set of data is shown here, the results from many oth&q the entire ring, it is not so difficult if one considers only

datasets are very similar. two special ones near the IP. Should one achieve the required
accuracy, the measurement and analysis could be carried on
VIIl. DISCUSSION within 1 min. Then one could even use it in an active feed-

back system to control the beam distribution at the IP.

A new method of measuring the lattice functions at any In addition, we can apply the method separately to two

azimuthal positio_n in a periodic "’?”d syr_nplectic system,_ in- iven locations in the ring and obtain the lattice matrices
particuar, the method 1 applied to measure the latios unc '(S1) ANJA(Ss). Then we can derive the complete transfor-
tions at the IP where the beams collide. We have demonr—natlon matrix between the two points using &8.2).
strated numerically that a complete set of lattice functions
can be accurately measured using two adjacent BPMs to-
gether with the known transformation matrix between them. The author would like to thank Stan Ecklund and Mike

With an example of drift space, we analytically solved theSullivan for taking the data and Martin Donald, John Irwin,
lattice functions in terms of the phase differences and ratioohn Seeman, Uli Wienands, and especially Franz-Josef
of amplitudes of the excited oscillations. For this example Decker and Yiton Yan for many helpful discussions. This
the analytical and numerical solutions yield essentially idenwork was supported by the Department of Energy under
tical results. Based on the analytical formula, estimates of th€ontract No. DE-AC03-76SF00515.
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